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The kagome lattice has been shown to have promise as the basis of active
structures, whose shape can be changed by linear actuators that replace some
of the bars of the lattice. As a preliminary examination, this paper examines
the effect of the actuation of a single bar in a large two-dimensional kagome lat-
tice. Previous work has shown that interesting properties of the kagome lattice
depend on the bars that are co-linear with the actuated bar being straight, but
has also shown that actuation causes these bars to bend; this paper therefore
explores the geometrically non-linear response of the structure. Numerical re-
sults show that due to geometrically non-linear effects, the actuation stiffness is
reduced from that predicted by linear models, while the peak elastic strain in
the structure is increased.

I. Introduction

Recent work has shown the feasibility of manufacturing structures that on a micro-scale are repetitive
trusses, and there is now interest in using these repetitive trusses as the basis for active structures.1,2

Individual actuators replace some of the members of the truss: altering the length of these actuators changes
the macroscopic shape of the structure.

In two dimensions, the kagome truss (Fig. 1) has been shown to be a promising solution for these
structures.3 It has been shown to be one of the few periodic, planar, single length scale lattice topologies
that has optimal passive stiffness. At the same time, if considered as pin-jointed, any bar can be actuated
without resistance. Although practical micro-scale structures will necessarily be rigid-jointed, the additional
resistance to actuation from bar bending is small providing that the members are slender. The rigid-
jointed planar Kagome lattice therefore has the required properties for use in high authority shape morphing
structures; namely passive stiffness and low resistance to actuation.

As a preliminary investigation, this paper will examine the effect of the actuation of a single bar in a
large two-dimensional kagome lattice, and will consider how the stockiness, s, of the members affects the
response. The stockiness is a non-dimensional measure of the aspect ratio of each bar, defined as the ratio of
the in-plane radius of gyration of the cross-section, k, to the length of the member, L. Practical structures
have s in the range from 0.005 to 0.05, which is the range investigated here. Previous work4 has examined
the energy required to actuate a single bar in a large two-dimensional lattice by considering various linear

analytical and computational models. However, the special properties of the kagome lattice are dependent
on its geometry, and actuation imposes large geometric deformations. This paper therefore builds on the
previous work by considering the geometrically non-linear response of the structure. The resistance of the
structure to actuation will be considered, as well as the limitation on actuation imposed by material yield;
the limiting actuation strain will be calculated for various values of material yield strain.

The paper is structured as follows. Section II will describe the computational model used, and Section III
will describe some generic features of the response of the kagome lattice to the actuation of a single bar.
Section IV then goes on to explore the build-up of force in the actuated member as the bar is actuated.
Section V explores the peak elastic strain anywhere in the structure due to the imposed actuation, and shows
how the actuation strain is limited by yielding of the structure for varying values of stockiness and yield
strain.
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Figure 1: A kagome lattice. This paper assumes that the structure is very large, and considers
the effect of lengthening a single bar, shown dashed. The computational model described in
this paper has approximately 40 times as many bars as the fragment shown here.

II. Computational model

The finite element package Abaqus5 was used to model the structure in two dimensions. The lattice
considered is rectangular, with a width of 100 times the individual member length L, and a height of
60 × L

√
3/2 ≈ 52L; the aim was to make the lattice large enough that edge effects were not significant. To

check this, two sets of simulations were carried out, one with all boundary nodes fixed, and one with all
boundary nodes but one free; the one fixed node was used to suppress rigid-body modes. The fixed and free
boundary cases provide bounds on the true behaviour of a very large lattice. A single lattice member was
actuated; it lies at the centre of the structure, and is parallel with the longer dimension of the structure. The
bar was actuated by raising its temperature, causing it to elongate. Each bar has a circular cross-section
of radius r. The material properties are assumed to remain linear, with a Young’s modulus E, giving an
axial stiffness EA, where A = πr2, and a bending stiffness EI, where I = Ak2, and k = r/2; the actuated
bar is assumed to have the same elastic properties as every other bar. Each bar of the structure is modelled
with four 2-node Euler-Bernoulli beam elements; test cases showed that using a higher number of elements
per bar gave results that were indistinguishable from those reported here. No consideration is given to the
actual size of a joint between bars, which is assumed to be at a point.

Results were calculated for eleven different bar radii, giving results for stockiness in the range s = 0.005
to s = 0.05. These stockiness ratios are chosen as they cover the range of interest for practical applications.

In order to check that the two-dimensional analyses were not suppressing an out-of-plane buckling mode,
one full three-dimensional analysis was carried out. This was done for the most slender structure, s = 0.005,
with small random imperfections introduced in the out-of-plane direction. The results were indistinguish-
able from the two-dimensional case, and we concluded that out-of-plane deformations did not have to be
considered.

III. Mode of deformation

The essential features of the deformation of the kagome lattice due to the actuation of a single bar are
the same for all values of stockiness and actuation strains that we have considered; Fig. 2 shows the small-
deformation mode (greatly magnified) for two different values of stockiness. It can be seen that deformation
takes place primarily along a narrow corridor parallel with the member being actuated.

Reference 4 described analytical models where the deformation was constrained to lie within a narrow
corridor parallel with the actuated bar. These models considered linear-elastic small deformation behaviour,
and showed that in this case the deformation dies away exponentially from the actuated bar, with a decay
constant proportional to the stockiness. This simple picture is somewhat complicated by the geometric non-
linearities considered in this paper. For actuation strains that cause significant deformation, the numerical
results show that the decay in actuation with distance from the actuated bar is no longer exponential, and
deformation begins to localise close to the actuated bar. However, in none of the cases reported in this paper
is the effect large, and the deformation modes would be difficult to distinguish from those plotted in Fig. 2.
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Figure 2: The shape of the central portion of a large kagome truss after a single bar (shown
dashed) is lengthened. In this case the calculation assumed small deformations; the defor-
mations shown here are greatly magnified for clarity. The width of the bars is not to scale.
(a) Stockiness ratio s = 0.005. (b) Stockiness ratio s = 0.045. Note that the displacement
attenuates more quickly in (b).

IV. Actuation forces

This section will consider the force, F (defined as compression positive), developed in the actuated bar
as it is lengthened. For small deformations, when the bar is approximately straight, F is nearly constant
along the length of the actuated bar; for larger deformations we define F to be an average of the varying

force F (x) along the bar, F =
∫ L

0
F (x) dx/L.

In order to present the results in a general format, we define a non-dimensional force F̂ ,

F̂ =
F

EA
, (1)

where EA is the axial stiffness of the actuated bar. We describe the actuation in terms of an actuation

strain, εa, where εa is the strain that the bar would experience if it were unconstrained; it is defined as
being positive when the bar gets longer. (In fact, the actuator extends by less than εa, as it also compresses
elastically due to the force F ).

Figure 3 shows the evolution of F̂ with the actuation strain, εa. As may be expected, a structure made of
stockier bars develops a larger axial force in the actuator than a structure made with less stocky bars — the
bending stiffness that resists the deformation shown in Fig. 2 is larger for the stockier bars. The s = 0.005
case shows considerable non-linearity, with F̂ reaching an approximate plateau at small actuation strains of
the order of 10%.

We define the actuation stiffness, K, to be the rate of change of force with actuation strain,

K =
dF

dεa

. (2)

K has units of force, as it is a stiffness measured with respect to a strain rather than a displacement; we can
non-dimensionalise K with respect to the axial stiffness of the actuated bar, EA,

K̂ =
K

EA
. (3)

K̂ is the slope of the graph shown in Figure 3. It is clear that as actuation proceeds, the actuation stiffness
decreases, and this agrees with a comment in Ref. 4: as actuation proceeds, the line of bars containing the
actuator is bent (see Fig. 2), and this is likely to lead to more bending-dominated behaviour, and hence a
geometrically non-linear analysis will show a consequent reduction in stiffness.

Figure 4 shows how the actuation stiffness varies with stockiness, and also how the tangent stiffness
evolves as the structure is actuated. As εa increases from zero, it can be seen that there is a reduction in
stiffness.
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Figure 3: The non-dimensional force F̂ developed in the actuated bar, when it has been
actuated by a strain εa, for four different values of stockiness s. In each case, two sets of
results are presented, one where the boundaries are fully fixed, and one where the boundaries
are unconstrained

It is straightforward to calculate the work required for actuation if the dimensions of the actuated bar
are assumed to remain constant. If an increment of actuation strain, δεa, is added, the work done by the
actuation, δW , is

δW = FLδεa (4)

and hence the total work done in actuating the bar from the rest state is

W =

∫ εa

0

F (ε)Ldε. (5)

In the linear case, we can substitute F = Kε into (5), and hence

W =

∫ εa

0

KLεdε =
Kε2

aL

2
. (6)

Reference 4 defined a non-dimensional energy penalty Ŵ by comparing the work done to actuate the bar,
W , with a reference energy, the work done by the actuated bar if the rest of the structure was rigid,
W0 = (AEL/2)ε2

a. For the linear case

Ŵ =
W

W0

=
K

EA
= K̂. (7)

Thus, in the linear case, the non-dimensional actuation stiffness, K̂ is exactly the energy penalty Ŵ . For
εa = 0, the results shown in Fig. 4 reproduce the results for Ŵ reported in Ref. 4: the actuation stiffness
scales with s, a result characteristic of the kagome lattice. (A stretching dominated structure would show
that K̂ did not vary with s, while a bending dominated structures would show K̂ scaled with s2).
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Figure 4: The non-dimensional actuation stiffness, K̂ of a large kagome lattice, shown for
different values of stockiness s, and different values of actuation strain εa.

V. Limits on actuation due to yield

A fundamental limitation on the actuation of a structure is that yielding anywhere in the structure must
be avoided. This section reports numerical results for the peak actuation strain that can be achieved in a
large kagome lattice.

Figure 5 shows the actuation strain, εa, at which yield first occurs for various values of yield strain, εy, in
the material. In each case, yield first occurred in the bars adjacent to the actuated bar, as shown in Fig. 6.

For larger values of stockiness, and smaller values of yield strain, the curves shown in Fig. 5 would collapse
onto a single master curve if εa/εy was plotted. However, significant deviation from this is seen for large
strains, εy = 2%, in the most slender case considered, s = 0.005. This is the case where the largest geometric
changes occur, and hence it is not surprising that the effect of geometric non-linearity is greatest here. The
effect of the non-linearity is to reduce the estimate of the peak actuation that can be imposed, and hence it
is important to consider these non-linear effects for large actuation of slender lattices.

VI. Conclusions

Many of the important aspects of the mechanics of kagome lattices depend on the line of bars co-linear
with the actuated bar being initially straight;4 however, actuation causes these bars to bend, as may be seen
clearly in Fig. 2. This paper has given some insight into the effect that this evident geometric non-linearity
has on the performance of actuatable kagome lattices.

The clearest effect of the geometric non-linearity has is on the force that is developed in the actuator.
Figure 4 shows the large reduction in actuation stiffness that occurs as εa increases. In many ways this could
be considered to be a positive effect; relatively, it becomes easier to actuate the structure as deformation
increases.

The geometric non-linearity seems to have a lesser effect on the results for the peak strain in the structure
caused by the actuation. Only for the largest actuations considered, for the structure made from the most
slender bars, does the value of the peak strain depart significantly from the pattern seen for structures made
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Figure 5: The actuation strain εa at which first yield occurs in a large kagome lattice, for
various values of stockiness, s, and yield strain, εy.
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Figure 6: The position of the peak strain in the kagome lattice due to the actuation of a single
bar. The peak strain occurs in the bars adjacent to the actuated bar, at the junction with the
actuated bar.

from more stocky bars at lower actuation strains. In this case, however, the effect of geometric non-linearity
is detrimental, reducing the actuation strain that can be achieved before yield.

There are a number of limitation in the present study that could be improved in future work. All of the
results for the case s = 0.005 show some divergence between the analysis done with free boundaries, and
that done with fixed boundaries. In this case, it is clear that the lattice considered needs to be larger to
achieve convergence. Also, there are two detailed aspects of the modelling that are likely to be important
but have not been included: no consideration has been given to the actual joint geometry, which may have
a significant impact on the peak stresses that occur; also, the effect of imperfections in the construction of
the lattice is likely to have a significant impact on the actuation stiffness.
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